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ABSTRACT

Genome sequences fromover 200 plant species have already been published, with this number expected to

increase rapidly due to advances in sequencing technologies. Once a new genome has been assembled

and the genes identified, the functional annotation of their putative translational products, proteins, using

ontologies is of key importance as it places the sequencing data in a biological context. Furthermore, to

keep pace with rapid production of genome sequences, this functional annotation process must be fully

automated. Here we present a redesigned and significantly enhanced MapMan4 framework, together

with a revised version of the associated online Mercator annotation tool. Compared with the original

MapMan, the new ontology has been expanded almost threefold and enforces stricter assignment rules.

This framework was then incorporated into Mercator4, which has been upgraded to reflect current knowl-

edge across the land plant group, providing protein annotations for all embryophytes with a comparably

high quality. The annotation process has been optimized to allow a plant genome to be annotated in a

matter of minutes. The output results continue to be compatible with the established MapMan desktop

application.
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INTRODUCTION

Plant sciences have seen a dramatic increase in the use of high-

throughput omics platforms, driven by recent technological

improvements. Among the quantitative omics technologies, tran-

scriptomics can be seen as mature with continually decreasing

costs as protocols are improved (Tzfadia et al., 2018),

metabolomics is widely adopted (Alseekh and Fernie, 2018),

and proteomics offers great potential (Vanderschuren et al.,

2013). Application of omics technologies to epigenetics data is

allowing great strides, for example in understanding the role of

plant DNA methylation (Zhang et al., 2018). Since these

technologies are complementary, their combined use is

uncovering novel key players in plant metabolism, signaling and

regulation, and driving functional pathway elucidation. This is

especially the case for coupled transcriptomics and metabolite

data, for example, in secondary metabolism (Fernie and Tohge,

2017; Wisecaver et al., 2017) and for transcriptomics in

combination with chromatin immunoprecipitation sequencing

to study transcriptional regulation (e.g., Ezer et al., 2017).

Genomics analyses are greatly aided by pathway and

process databases that capture existing knowledge and allow

visualizations of individual or combined datasets. Cross-

species genomics analyses are also playing an increasing role
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in research. For example, comparative genome analyses can be

leveraged to offer a better insight into plant gene regulatory net-

works (Ferrari et al., 2018). Integration of datasets from different

omics technologies and from different genotypes and species

is necessary for analysis of pan-genomic datasets, but is chal-

lenging and requires the creation of contextual frameworks.

One example is the MapMan family of software, which allows

users to evaluate omics data based on the biological context

(Jaiswal and Usadel, 2016).

The association between a genomic locus and its immediate

products in transcriptomic and proteomic datasets is usually triv-

ial. However, the coupling of metabolites with transcripts/pro-

teins (Fernie and Stitt, 2012) or of different transcripts/proteins

to each other requires prior knowledge. While relationships

between proteins can be established using large-scale protein–

protein interaction screens (Altmann et al., 2018), these do not

cover all potential interactions even in the case of the model

plant Arabidopsis thaliana. Thus, machine-readable pathway

and process annotations have been used as a stopgap. They

can also be used to infer relationships between transcripts and

metabolites. The reverse is also true, as ontologies can be in-

ferred from transcriptional coupling using a guilt-by-association

approach (Di Salle et al., 2017).

The MapMan framework was developed specifically for plants

with the design goal to facilitate the visualization of omics

data on plant pathways (Thimm et al., 2004). MapMan uses a

simple hierarchical tree structure of terms referred to as ‘‘bins,’’

which describe biological contexts/concepts. Major biological

processes (e.g., photosynthesis) are encompassed in top-level

bins, and each child bin represents a more narrowly focused

subprocess or component within the context of the parent bin.

Assignment of proteins to the lowest-level (i.e., leaf) bins was

preferred in order to make the annotation as precise as possible,

although assignment to abstract higher-level bins was supported.

Proteins were mostly assigned to a single bin, but for some

proteins with functions in diverse biological processes it was

necessary to correspondingly assign to multiple bins.

While initially focused on metabolic processes, the MapMan

framework rapidly evolved to include regulatory processes

such as transcription factors and signaling pathways as well as

biotic and abiotic stress responses. The ontology was exploited

as the foundation for the MapMan application, which allows

quantitative omics data to be visualized on functional pathways

(Thimm et al., 2004). It also allows users to investigate enriched

pathways and to functionally explore differentially expressed

genes and accumulated metabolites.

Although MapMan was originally developed for use with the

model species A. thaliana, it was later adapted to other species

by similarity transfer and manual curation (Ling et al., 2013). This

proved to be infeasible as a long-term approach, due to the rapid

increase in the number of species for which genomics data were

available. The tool Mercator was therefore developed to allow

automatic annotation of plant protein sequences with MapMan

terms (Lohse et al., 2014). Mercator relied on sequence

similarity and, when appropriate, protein domains from InterPro

(Mulder and Apweiler, 2007) and CDD (Marchler-Bauer et al.,

2013) that had been manually assigned to the bins. However,

this approach resulted in many annotations to abstract levels,

partly due to the absence of appropriate bins for the new species.

In terms of describing proteins, the most commonly used frame-

work is the Gene Ontology (GO), which is widely used across all

life forms. The GO framework defines terms and their relationship

to each other as a means to formalize protein description (Gene

Ontology Consortium, 2014). The terms are partitioned in three

specific categories (named ‘‘Biological Process,’’ ‘‘Molecular

Function,’’ and ‘‘Cellular Component’’). These GO terms are

arranged as a directed acyclic graph (DAG), where a child term

may have more than a single parent. Generally, a single protein

can expect to be annotated with a multitude of GO terms

originating from each category. While GO is beneficial for a rich

annotation, it can pose difficulties when it is used to visualize

omics data because the multiple annotations lead to a strong

redundancy (Jantzen et al., 2011).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

ontology is a collection of databases covering many different as-

pects of biology (Kanehisa et al., 2017). Of these, the KEGG

Orthology (KO) database is the closest equivalent to the

MapMan framework, using a similar hierarchical structure of

protein function terms. KO encompasses genes from both

eukaryotes and prokaryotes, and while it was traditionally

focused on metabolism, it has been expanded to include a

wider range of biological processes. Other frameworks such as

PlantCyc (Schl€apfer et al., 2017) and Plant Reactome (Naithani

et al., 2017) focus primarily on metabolic processes, and, while

highly detailed within their area of focus, do not cover a broad

range of biological processes and thus cannot easily be

compared with MapMan.

We have now completely redesigned the MapMan framework

and developed a more powerful Mercator pipeline to sustainably

annotate the proteome of any land plant. Here we present the first

stable release of the newMapMan4 framework and the improved

online tool Mercator4, and showcase their application in deter-

mining gene loss in parasitic plants.

RESULTS

MapMan4: A Novel Biological Context-Based
Framework

The MapMan4 ontology represents a comprehensive set of

common biological processes and incorporates genetic informa-

tion from a wide variety of plant species. The core design

principles from the original MapMan (Thimm et al., 2004) have

been retained, such as the simple tree structure with each top-

level category representing a main biological concept with each

sublevel becoming increasingly specialized. In MapMan4, pro-

teins are only classified into leaf node categories (Figure 1,

Lopez-Obando et al., 2015), thus ensuring that all assignments

receive precise protein descriptions. In contrast to the original

MapMan framework, assigning proteins to top-level or

intermediate nodes is no longer possible. The total number of

bin categories has been almost tripled, with currently 4147 leaf

nodes and 1340 branch nodes, compared with 1550 leaf nodes

and 341 branch nodes in MapMan v.3. This increase provides a

finer granularity that enables users to perform more precise

analyses at the biological level.
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Currently, the MapMan4 ontology comprises 27 functional top-

level categories representing a diverse range of biological pro-

cesses (Table 1). In principle, these 27 top-level bins should

contain only proteins that have a strong biological context, e.g.,

the well-defined function of a protein within a pathway. However,

this strict approach results in the classification of around only

one-third of plant proteins, due to limited plant biological

knowledge.

Therefore, the criteria were broadened, in specific cases, to also

accept proteins that had weaker biological contexts. One

example are transcription factors, which are simply classified us-

ing their canonical transcription factor family as context.

MapMan4 currently distinguishes 91 transcription factor families.

These families were designed primarily using PlantTFDB (Jin

et al., 2017) and PlnTFDB (Pérez-Rodrı́guez et al., 2010) as a

guide, but in some cases sequence comparison suggested

additional subdivision. As an example, for the HD-ZIP family

from PlantTFDB, this has been divided into HD-ZIP I/II transcrip-

tion factor, HD-ZIP III transcription factor, and HD-ZIP IV tran-

scription factor in MapMan4, following the structure from Ariel

et al. (2007). Comparison of the MapMan4 transcription factor

bins (BIN-15.7 and BIN-15.8) against the iTAK (Zheng et al.,

2016) transcription factor classification for A. thaliana revealed

1688 common transcription factor genes, 256 genes in

MapMan4 but not in iTAK, and 79 genes in iTAK but not in

MapMan4, indicating substantial agreement between the

annotations. Mutual Information between the specific classes

assigned by iTAK and MapMan4 to these shared 1688 genes is

3.499, very close the maximum possible value, given the

entropy of each classification (3.589 for iTAK, 3.665 for

MapMan4), thus indicating almost complete agreement of the

specific class of each transcription factor gene.

Other cases where limited functional context is available are the

large enzyme families, which are currently gathered into Bin-50.

This category includes proteins that are known to belong to

enzyme families, but information pertaining to their specific func-

tion may not have been ascertained. This category follows the

Enzyme Commission structure to the second level, and currently

contains 50 categories applicable to plants. In compliance with

the original MapMan v.3 framework, proteins that have not

been classified are assigned to Bin-35. This bin is further subdi-

vided into Bin-35.1 (not assigned.annotated) and Bin-35.2 (not

assigned.not annotated), depending whether they can or cannot

be assigned Swiss-Prot based annotations (for details see

Methods).

Comparison with Kyoto Encyclopedia of Genes and
Genomes

The KO uses a hierarchical structure of protein function terms

similar to MapMan4 (see Introduction). However, MapMan4

focuses exclusively on the plant kingdom, and thus includes

plant-specific processes at a finer level of granularity. The plant

focus of MapMan4 is more apparent in some biological pro-

cesses than others. In metabolism, there is a considerable simi-

larity, with, e.g., hexokinases, which in KO are under the hierarchy

‘‘Metabolism.Carbohydrate metabolism.Glycolysis/Gluconeoge-

nesis.HK; hexokinase’’ (ko0844), in MapMan4 as ‘‘Carbohydrate

metabolism.sucrose metabolism.degradation.hexokinase’’ (BIN-

3.1.4.3). In other areas, there is a substantially different organiza-

tion, with important plant-specific processes, such as Cell wall

and Nutrient uptake, which are top-level categories in

MapMan4 distributed in unrelated parts of the KO hierarchy,

based on, for example, the substrates involved.

The KO structure uses up to four levels, which results in very high

branching factors, particularly between the third and fourth

levels. In contrast, the MapMan4 framework currently uses up

to eight levels, and can allocate hierarchy levels as needed

to the biological process (e.g., Protein degradation.peptide

A

B

Figure 1. Scheme of the MapMan4 Framework.
(A) The MapMan4 hierarchical tree structure describes the biological

context of proteins. The reference protein descriptions form the leaf

nodes.

(B) Example generation of MapMan4 categories for the biosynthesis,

perception, and signaling of the phytohormone strigolactone.
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Top level bin name
Number of
leaf bins

Plant species (release)
–Number of bins containing at least one protein (% bins occupied)
–Total number of proteins in this category (% of all proteins of that plant)

Arabidopsis thaliana
(TAIR v10)

Solanum lycopersicum
(ITAG v3.2)

Triticum aestivum
(IWGSC v1)

Zea mays
(AGP v4)

1 Photosynthesis 226 219 (97%) 183 (81%) 219 (97%) 193 (85%)

288 (1.04%) 296 (0.83%) 814 (0.79%) 341 (0.86%)

2 Cellular respiration 136 132 (97%) 119 (88%) 133 (98%) 128 (94%)

244 (0.88%) 234 (0.65%) 597 (0.58%) 306 (0.77%)

3 Carbohydrate metabolism 92 92 (100%) 92 (100%) 90 (98%) 90 (98%)

232 (0.84%) 243 (0.68%) 740 (0.71%) 290 (0.73%)

4 Amino acid metabolism 135 131 (97%) 130 (96%) 131 (97%) 131 (97%)

237 (0.86%) 242 (0.68%) 692 (0.67%) 331 (0.84%)

5 Lipid metabolism 173 171 (99%) 167 (97%) 165 (95%) 162 (94%)

443 (1.60%) 485 (1.36%) 1495 (1.44%) 615 (1.56%)

6 Nucleotide metabolism 53 53 (100%) 52 (98%) 53 (100%) 53 (100%)

103 (0.37%) 97 (0.27%) 270 (0.26%) 131 (0.33%)

7 Coenzyme metabolism 158 155 (98%) 154 (97%) 152 (96%) 150 (95%)

221 (0.80%) 226 (0.63%) 643 (0.62%) 266 (0.67%)

8 Polyamine metabolism 12 11 (92%) 11 (92%) 11 (92%) 9 (75%)

25 (0.09%) 25 (0.07%) 64 (0.06%) 22 (0.06%)

9 Secondary metabolism 93 86 (92%) 65 (70%) 64 (69%) 59 (63%)

223 (0.81%) 180 (0.50%) 573 (0.55%) 189 (0.48%)

10 Redox homeostasis 47 47 (100%) 47 (100%) 46 (98%) 45 (96%)

124 (0.45%) 137 (0.38%) 344 (0.33%) 164 (0.42%)

11 Phytohormones 140 138 (99%) 133 (95%) 126 (90%) 128 (91%)

585 (2.12%) 597 (1.67%) 1489 (1.44%) 614 (1.55%)

12 Chromatin organization 113 113 (100%) 110 (97%) 109 (96%) 109 (96%)

312 (1.13%) 357 (1.00%) 1305 (1.26%) 435 (1.10%)

13 Cell cycle 258 258 (100%) 252 (98%) 252 (98%) 247 (96%)

448 (1.62%) 432 (1.21%) 1260 (1.22%) 558 (1.41%)

14 DNA damage response 67 67 (100%) 64 (96%) 67 (100%) 66 (99%)

84 (0.30%) 83 (0.23%) 247 (0.24%) 104 (0.26%)

15 RNA biosynthesis 295 294 (100%) 288 (98%) 289 (98%) 285 (97%)

2310 (8.36%) 2563 (7.17%) 7282 (7.03%) 3114 (7.89%)

16 RNA processing 328 326 (99%) 315 (96%) 314 (96%) 309 (94%)

498 (1.80%) 515 (1.44%) 1404 (1.36%) 648 (1.64%)

17 Protein biosynthesis 328 327 (100%) 313 (95%) 325 (99%) 310 (95%)

627 (2.27%) 626 (1.75%) 1668 (1.61%) 791 (2.00%)

18 Protein modification 299 294 (98%) 292 (98%) 296 (99%) 294 (98%)

1485 (5.38%) 1465 (4.10%) 5324 (5.14%) 1742 (4.41%)

19 Protein degradation 187 186 (99%) 186 (99%) 186 (99%) 186 (99%)

1044 (3.78%) 1089 (3.04%) 3405 (3.29%) 1307 (3.31%)

20 Cytoskeleton 107 102 (95%) 102 (95%) 101 (94%) 99 (93%)

307 (1.11%) 281 (0.79%) 760 (0.73%) 368 (0.93%)

Table 1. Functional Assignment of Arabidopsis thaliana, Solanum lycopersicum, Triticum aestivum and Zea mays proteins Across
MapMan4 Categories

(Continued on next page)
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tagging.Ubiquitin (UBQ)-anchor addition (ubiquitylation)), the

particular step in the process (UBQ-ligase E3 activities), the pro-

tein complex grouping (Cullin-based ubiquitylation complexes),

the specific protein complex (SKP1-CUL1-FBX (SCF) E3 ligase

complexes), and specific protein component within the complex

(F-BOX substrate adaptor components.SKP component).

Comparison with Gene Ontology

The GO consists of a DAG of annotation terms, from three cate-

gories, Cellular Component, Molecular Function, and Biological

Process (see Introduction). Furthermore, it is common in GO

that a single protein will be annotated with multiple terms from

each GO category, e.g., the A. thaliana Hexokinase 1 protein

(HXK1, At4g29130) is annotated (on www.arabidopsis.org) with

multiple Biological Processes including hexose catabolic

process, glycolytic process, cellular glucose homeostasis, and

likewise multiple Molecular Functions including hexokinase

activity, ATP binding, and zinc ion binding. Since the various

terms capture different aspects of the protein, the terms cannot

easily be inferred from each other, and thus GO terms should

be considered as a group rather than individually. As previously

noted in the Introduction, the DAG-based structure and the

assignment of multiple terms per protein makes the visualization

and interpretation of the GO annotations more complex than

those from MapMan4 or KEGG, where annotation with a single

term is often possible.

Automatic Annotation of Plant Proteomes

The Mercator4 annotation process was assessed using the 57

available plant genomes from Ensembl Plants version 41

(Bolser et al., 2017) (Figure 2 and Supplemental Table 1). When

considering all splice forms, the average protein classification

rate was found to be 43.51% for dicots, 39.42% for monocots,

and lower for other species (33.83%), reflecting the high

diversity within the algae. Annotation rates were notably higher,

with 64.65%, 58.5%, and 46.88% for dicots, monocots, and

other species, respectively. Repeating this analysis using only

the longest splice isoform of each gene resulted in a 1%–2%

drop in the rate of bin assignment and annotation. These

figures compare favorably with the annotation state of most

sequenced plant species (Rhee and Mutwil, 2014).

For the model plant A. thaliana, the Mercator4 protein classifica-

tion rate is currently at about 47% (Figure 2 and Supplemental

Table 1). This compares favorably with a KEGG annotation

using the KAAS pipeline (Moriya et al., 2007), which covered

32%. It is, however, lower than the rate of 64% achieved by the

GO framework (having at least one GO term assigned to

Molecular Function or Biological Process) (Bolger et al., 2018).

However, as previously noted, assignment of a single GO term

is not generally equivalent to a MapMan4 classification, and

this annotation is the result of a large-scale community effort

rather than an automated annotation pipeline.

Web Annotation Interface

To facilitate use of MapMan4 for any plant proteome or transcrip-

tome,wehavemadeavailable thecorrespondingMercator4 pipe-

line for automatedplant protein annotation (Figure 3, https://www.

plabipd.de/portal/web/guest/mercator4). This web-based user

interface allows the user to submit a text file (FASTA format) of

either nucleotide or protein sequences. The user can provide an

optional job name that will be used to name the result file. Multiple

Top level bin name
Number of
leaf bins

Plant species (release)
–Number of bins containing at least one protein (% bins occupied)
–Total number of proteins in this category (% of all proteins of that plant)

Arabidopsis thaliana
(TAIR v10)

Solanum lycopersicum
(ITAG v3.2)

Triticum aestivum
(IWGSC v1)

Zea mays
(AGP v4)

21 Cell wall 126 122 (97%) 115 (91%) 116 (92%) 114 (90%)

585 (2.12%) 540 (1.51%) 1648 (1.59%) 595 (1.51%)

22 Vesicle trafficking 212 212 (100%) 210 (99%) 209 (99%) 208 (98%)

551 (1.99%) 538 (1.50%) 1361 (1.31%) 713 (1.81%)

23 Protein translocation 135 135 (100%) 132 (98%) 132 (98%) 128 (95%)

198 (0.72%) 211 (0.59%) 606 (0.59%) 288 (0.73%)

24 Solute transport 174 171 (98%) 171 (98%) 171 (98%) 170 (98%)

1137 (4.12%) 1268 (3.55%) 3936 (3.80%) 1433 (3.63%)

25 Nutrient uptake 52 46 (88%) 45 (87%) 43 (83%) 44 (85%)

159 (0.58%) 134 (0.37%) 437 (0.42%) 153 (0.39%)

26 External stimuli response 111 97 (87%) 107 (96%) 99 (89%) 95 (86%)

359 (1.30%) 313 (0.88%) 731 (0.71%) 331 (0.84%)

27 Multi-process regulation 38 38 (100%) 37 (97%) 37 (97%) 37 (97%)

138 (0.50%) 145 (0.41%) 463 (0.45%) 209 (0.53%)

50 Enzyme classification 50 35 (70%) 36 (72%) 37 (74%) 40 (80%)

1170 (4.24%) 1827 (5.11%) 6479 (6.26%) 1936 (4.90%)

Table 1. Continued
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jobs can be simultaneously submitted andmonitored. Users have

the option of providing an email address that will be notified when

their jobs are complete.

Once a job has finished, a summary of the protein categoriza-

tion is provided along with a bar chart. This bar chart shows

how many of the leaf categories belonging to each top-level

bin contain at least one protein. In cases where a complete

proteome was submitted, this chart can immediately suggest

whether some biological pathways are missing. However,

this insight relies on the completeness of the submitted

proteome because underpopulated categories could also

be an indication of an incomplete proteome. Table 1 depicts

these values for A. thaliana, tomato, wheat, and corn, and

demonstrates that these values are usually above 90% for

well-conserved processes.

For amore detailed view of the protein classification, the user can

launch the Mercator4 Tree Viewer (Figure 4). This visualization

shows the number of proteins assigned to each bin, displayed

on the MapMan4 hierarchical tree. The tree structure can also

be used to compare multiple proteomes. To support this, a

selection of reference proteomes is provided for comparison

purposes. A download option is provided that creates a tab-

delimited text file for all jobs and for the selected reference pro-

teomes. The data can easily be loaded into a variety of statistical

programs to allow amore detailed analysis or to perform compar-

ison between proteomes.

Protein classification and annotation is performed on an HPC

cluster that was recently upgraded. Further speed enhance-

ments were achieved by reducing the number of sequence

comparison tools and reference databases used during the

bin assignment and annotation. The post-processing code

was also optimized, resulting in a dramatic reduction in disk

I/O. These hardware and software enhancements have re-

sulted in speed improvements such that a typical diploid plant

proteome (�30 000 proteins) can be processed within a few

minutes.

Legacy Versions

Access to the original Mercator v.3 will continue to be supported,

and a separate tool (Legacy Mercator4) is available to support

legacy versions of Mercator4 (https://www.plabipd.de/portal/

legacy-mercator4). Providing access to legacy Mercator4 ver-

sions ensures that any analyses carried out will remain reproduc-

ible in the future. However, given that users could potentially run a

job against a variety of versions, the Mercator4 tree viewer is not

supported in the legacy version.

Visualization in the MapMan Desktop Application

Given the extensive redesign of the MapMan framework for this

release, it was necessary to create new MapMan4 pathway dia-

grams to reflect these changes and provide compatibility with the

MapMan desktop application. A series of new pathway diagrams

have been released that enable the visualization of transcripts us-

ing theMapMan desktop application. These include, for example,

new kinase families and nitrogen uptake. The new pathway dia-

grams are available via the MapMan website (https://mapman.

gabipd.org/mapmanstore).

As data analyses are often performed online nowadays, we have

developed a feature-reduced web version of the MapMan

desktop application. This allows visualization of functional re-

sponses based on client web browser technology and can easily

integrate into functional genomics analysis platforms. As all

rendering and business logic is performed on the client side

Figure 2. Mercator4 Annotation Rates for Plant Proteomes.
Fifty-seven plant proteomes from Ensembl Plants v41 categorized by theMercator4 annotation. The diagram distinguishes between ‘‘classified’’ proteins

(assignable to aMapMan4Bin-1/27 and Bin-50) and ‘‘annotated’’ proteins (assignable to aMapMan4 Bin-1/27, Bin-50, or a Swiss-Prot protein entry). The

rate is given as proportion of the total number of proteins.
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(i.e., on the web browser), and this component can be integrated

into simple analysis platforms or static websites. Alternatively,

the demo website can be downloaded and used as an

embedded MapMan desktop application (https://usadellab.

github.io/MapManJS/ultramicro.html).

Performance Measures and Comparison with Other
Annotation Frameworks

Gene Network-Based Assessment of MapMan4 Protein

Functional Annotation

A significant challenge with evaluating the effectiveness of pro-

tein functional annotation is the lack of large evaluation datasets

that are independent of the protein sequence. One strategy to

elucidate such sequence-independent information is by using

‘‘guilt-by-association’’ approaches based on expression infor-

mation (Di Salle et al., 2017). It has previously been reported by

Klie and Nikoloski (2012) that the MapMan v.3 ontology

outperforms GO in this area, providing a higher annotation rate

of unknown proteins based on, for example, a simple k-nearest

neighbor approach. As the same design principles were

adhered to in the redesigned and expanded MapMan4

ontology, we expected it to perform even better in the analysis

of biological networks.

We compared the performance of MapMan4 and the original

MapMan v.3 release. Using a similar approach to that described

by Klie and Nikoloski (2012), we calculated simple gene networks

based on Pearson and Spearman correlation for the model plant

A. thaliana, based on data downloaded from GeneCAT (Mutwil

et al., 2008). For each gene pair, we assessed where both

corresponding protein members had strong context bin

assignments and how many of these pairs shared at least one

MapMan top-level category. As can be seen in Figure 5, the

new MapMan4 framework consistently outperformed the old

MapMan v.3 annotation in terms of precision, regardless of

whether the gene networks were constructed using Pearson or

Spearman correlation thresholds.

Assessment of MapMan4 Using the Gene Ontology

Framework

To bridge and compare the MapMan4 annotation with the corre-

sponding GO annotation, 572 412 reference protein sequences

from the public Swiss-Prot database were annotated by

Mercator4 (using 3989 distinct MapMan4 leaf categories). On

average, 143 reference proteins were assigned to each

MapMan4 bin. The GO terms for each individual protein of a

MapMan4 category were extracted, proteins without GO annota-

tions discarded, and the GO terms shared by all proteins

assigned to the MapMan4 bin. On average, 41 GO terms were

assigned to each bin. Less than 1% of the MapMan4 bins

were assigned no GO term at all. This was either because there

was a single reference protein without GO annotations assigned

to the bin (0.1%) or because the reference proteins did not share

any GO terms (0.75%).

Approximately 34% of the MapMan4 bins showed a non-

unique pattern of GO terms (i.e., the GO term collection was

shared with at least one other bin). In some cases, these shared

GO term patterns are the result of the same protein function ex-

isting in different biological contexts. In other cases, they were

caused by the fine granularity of the MapMan4 bins—for

example, the individual ribosomal proteins are categorized

into many specifiable MapMan4 bins that all share the same

GO term pattern. Sometimes, the shared term patterns may

have been a result of the stringent filtering requiring a GO

term to be shared by all proteins before getting included. This

therefore resulted in an enrichment of the higher-level, more

generic GO terms that would be expected to be present in a

number of bins.

As an assessment of specificity or detail of the protein function

description formed by the overall GO annotation of a bin, we

computed the depth of each GO term. The depth of a given

GO term was measured as the minimum number of edges

separating the root node of the GO graph from the respective

GO term. The relationship between the depth of a GO term

and its information content was previously analyzed by Klie

and Nikoloski (2012) using GO annotations from the A. thaliana

proteome. They found that a depth value of 6 corresponds to

an information content of 90% of its maximum content, when

terms from the GO categories ‘‘Biological Process’’ and

‘‘Cellular Component’’ are assessed. The depth value of the

MapMan4 bins (compound GO annotation) was calculated to

Figure 3. Overview of the Mercator4 Protein Annotation
Process.
Mercator4 assigns MapMan4 categories to protein sequences provided

by the user. The resulting categorization can be visualized online by the

Mercator4 tree viewer (Figure 4) or downloaded as a tab-delimited text file.

On a local computer, the file together with a corresponding expression

data file can be loaded into the MapMan desktop application to

visualize the expression for each MapMan4 category.
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be 6.6 on average, thus suggesting a very detailed description of

the protein function.

To assess thequality ofMercator4-inferredGO terms,weused the

Oryza sativa proteins, from UniProt/trEMBL, as a test dataset. To

avoid bias, 3467 proteins that overlapped with Swiss-Prot were

removed. As a gold standard for the annotation, we downloaded

the latest O. sativa GO term annotation (http://geneontology.org/

gene-associations/gene_association.gramene_oryza.gz) and re-

tained only those annotations that had experimental evidence or

were made by a human expert curator. For reasons of complete-

ness, the remaining GO annotations were extended with their

respective ancestral terms as obtainable from the directed GO

graph. This resulted in a gold standard of 19 629 distinct GOanno-

tations.Due to removingelectronically inferredannotations,68572

proteins were left unannotated and were also removed. In total,

616 proteins from the original dataset of 72 655 remained.

Mercator4 was used to classify the test proteins, and GO terms

were inferred from these assignments. An independent GO

term assignment was also performed using InterProScan.Merca-

tor4 and InterProScan inferences were compared with the gold

standard annotation, and resulted in a Matthews Correlation

Coefficient (MCC) of 0.16 for both Mercator4 and InterProScan

(with Mercator4 yielding a slightly higher value), indicating that

GO terms inferred are indeed meaningful and not biased.

Strikingly, when the MapMan4 categories were mapped onto

GO terms using only a subset of 41 898 Swiss-Prot plant proteins,

the GO annotation results were similar to the results obtained

using all Swiss-Prot references (see above). This suggests that

the MapMan4 framework is not only able to annotate protein

functions present in plants, but also to assign these functions

to conserved non-plant proteins. However, protein functions

not found in plants are beyond the scope of the MapMan4

framework.

Usage Example: DetectingGene Losses inCuscutaSpecies

Data mining for genome changes should be promising approach

when analyzing gene loss in plants with a reduced gene content

requirement such as parasitic plants. In a test case, we used the

Figure 4. Mercator4 Tree Viewer.
Screenshot of theMercator4 tree viewer that compares annotations from user jobs and—this example—from the reference species Arabidopsis thaliana.

Each entry (colored circles within the tree) has the number of proteins assigned to a certain MapMan4 category, displayed with the option to see the

protein names by hovering over the protein number.
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Mercator4 to analyze the proteomes deduced from the genome

of the holoparasitic species Cuscuta campestris (Vogel et al.,

2018) and Cuscuta australis (Sun et al., 2018), the plastid-

encoded proteomes of Cuscuta gronovii (Funk et al., 2007) and

Cuscuta obtusiflora (McNeal et al., 2007), and the proteomes of

the related autotrophic species Ipomoea nil (Hoshino et al.,

2016), Solanum lycopersicum (Tomato Genome Consortium,

2012), and the plastidial proteome of Ipomoea batatas (Yan

et al., 2015).

Transcription in plastids is mediated by two different RNA poly-

merases, a nucleus-encoded RNA polymerase, and a plastid-

encoded RNA polymerase (PEP) complex (Yu et al., 2014;

Pfannschmidt et al., 2015). The PEP is predominantly

responsible for transcribing genes involved in photosynthesis

(Yagi and Shiina, 2014) and consists of the conserved plastid-

encoded core subunits rpoA, rpoB, rpoC1, and rpoC2. All the

core subunits have been reported as missing in the plastid ge-

nomes of C. gronovii (Funk et al., 2007) and C. obtusiflora

(McNeal et al., 2007). The Mercator4 analysis with visualization

of Bin-15.9 (RNA biosynthesis.organelle machineries.RNA poly-

merase activities) confirms the lack of the PEP core subunits

(Figure 6B) in these Cuscuta species. In comparison, the plastid

genome of the related autotrophic I. batatas contains the

genes for the PEP subunits (Figure 6B). In addition, Mercator4

reveals that the nuclear genomes of C. campestris and

C. australis have experienced major losses of the PAP/pTAC

PEP-associated co-factors (Figure 6A). Moreover, the putative

regulatory co-factors PrdA and Prin2, as well as the six Sigma-

like factors required for the initiation of the plastidial transcription

by PEP, are lacking. Interestingly, the transcriptionally active

plastid chromosome proteins pTAC9 and pTAC17were identified

by Mercator4 in both Cuscuta proteomes (Figure 6A).

It has been shown that many plastidial RNA editing sites

were abolished in Cuscuta species (Tillich and Krause, 2010).

The visualization of Bin-16.10.2 (RNA processing.organelle

machineries.RNA editing) confirms major losses of plastidial

RNA editing factors in Cuscuta species. In accordance with this

reduction in editing sites, 11 of the 15 editing factors found in

tomato and I. nil are lacking in C. campestris and C. australis

(Figure 6C).

Comparison Using Other Ontologies and Automated

Annotation Tools

To determine whether the biological insights described above,

regarding the PEP complex and plastidial RNA editing factors,

could potentially be discovered with other annotation pipelines

and frameworks, we reannotated the 27 PEP core subunits and

associated factors and 32 plastidial RNA editing factors from

S. lycopersicum, using both the previous Mercator v.3 release

and the KAAS pipeline (Moriya et al., 2007).

Mercator4 had assigned these 59 proteins to 42 different bins,

illustrating the fine granularity of the MapMan4 framework struc-

ture. Furthermore, these categories were coherently structured

under two branch nodes, representing the PEP complex compo-

nents and RNA editing factors, respectively, making the loss of

these mechanisms readily apparent by comparing the gene

counts across species.

In contrast, Mercator v.3 could annotate 33 of the 59 proteins. Of

these, 17 proteins were classified in broadly appropriate bins

(RNA.transcription, RNA.regulation of transcription, RNA.RNA

binding) while 16 others were assigned to unrelated bins. Loss

of the PEP core subunits, which are assigned to RNA.transcrip-

tion, would however be difficult to notice as this bin is quite

general, and thus many other proteins are assigned to the

same category. Likewise, any signal from the loss of PEP-

associated components and plastidial RNA editing factors would

be difficult to discern, due to the low annotation rate and large

number of other proteins in the relevant categories.

Annotation using the KAAS pipeline could assign only 11 of the 59

proteins. Of these, the four PEP core subunits were correctly as-

signed to the PEP RNA polymerase KO groups, while others were

assigned to spliceosome, signal transduction, and chaperones

KO groups. Loss of the PEP core subunits would be clear within

the RNA polymerase KO groups; however, the related loss of

PEP-associated components and loss of plastidial RNA editing

factors would likely be missed.

DISCUSSION

The rapidly expanding number of available plant genome se-

quences (https://www.plabipd.de/plant_genomes_pa.ep) offers

an opportunity for unraveling protein function through compara-

tive gene regulatory network analysis (Ferrari et al., 2018). In

addition, it widens the application of transcriptomics and

proteomics tools (Sheth and Thaker, 2014) and plant genome

scale metabolic prediction (De Oliveira Dal’molin and Nielsen,

Figure 5. Analysis of Concordant Bin Pairs in Correlation
Networks.
Analysis was performed for different correlation thresholds in the

Arabidopsis GeneCAT expression dataset. Gene pairs are displayed (as

fraction of all informative pairs) for which both corresponding protein se-

quences were assigned to the same top-level category. The original

MapMan v.3 annotation is shown in red and the MapMan4 annotation in

blue. Solid lines represent Pearson correlation and dotted lines represent

Spearman correlation.
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Figure 6. Lacking Components of the Plastidial RNA Polymerase Complex and Plastidial RNA Editing Factors in Cuscuta spp.
(A) Screenshot of the Mercator4 tree viewer for Bin-15.9 (RNA biosynthesis.organelle machineries). Most of the plastid transcriptionally active chro-

mosome (TAC) components are not available in C. campestris and C. australis (inner columns), while the proteomes of I. nil (outer left column) and

S. lycopersicum (outer right column) contain all nuclear encoded components of the RNA polymerase PEP complex.

(B) Screenshot as in (A) but for plastid-encoded proteomes. The plastid-encoded core components of the RNA polymerase (PEP) complex are available

in the plastid proteomes of S. lycopersicum and I. batatas but not the parasitic C. gronovii and C. obtusiflora (inner columns).

(C) Screenshot of the Mercator4 tree viewer for Bin-16.10.2 (RNA processing.organelle machineries.RNA editing). Many plastidial RNA editing factors,

while present in autotrophic Solanales species (outer columns), are not available in parasitic Cuscuta species (inner columns). The Mercator4 tree viewer

also includes the RNA editing factors LPA66 and RARE1, which do not seem to occur in any of the Solanales plant species.
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2013) to phylogenetically remote plants. Genomics and systems

biology share common ground (Conesa and Mortazavi, 2014)

and a draft genome is often the start for additional downstream

analyses (Cuevas et al., 2016). However, protein sequences

need to be put into a functional biological context to enable

meaningful genome comparison within and between species.

The demand for functional annotation is already visible in the

use of the original Mercator tool, which has processed more

than 12 000 datasets (i.e., genomes and transcriptomes) since

its release (Lohse et al., 2014). While there is likely to be

considerable redundancy between these datasets with

regard to species, a recent study (Rai et al., 2017) came to the

conclusion that almost 1000 different plant species have been

studied by RNA-sequencing technology. This is likely to be an

underestimate as it was based merely on publicly available data

extracted from the NCBI Sequence Read Archive (https://www.

ncbi.nlm.nih.gov/sra).

An increasing number of studies are coupling metabolite and

transcriptome profiling data. This has been done in model plants

for some years (Gibon et al., 2006; Satou et al., 2014). A rapidly

expanding area is secondary metabolism in medicinal or

ornamental plants, with the goal of discovering novel pathway

members and gaining insights into pathway regulation (Polturak

et al., 2018; Scossa et al., 2018).

Thus, the need for functional annotation and tools to analyze

and interpret multi-omics data for model and in particular non-

model plant species is increasing (Bolger et al., 2018). This is

especially necessary to bridge between omics data and

research questions about physiology (Do Amaral and Souza,

2017). Mercator was initially developed for MapMan against

this background (Lohse et al., 2014), but its extension was

restricted due to the underlying design of MapMan. Thus, we

have redesigned the MapMan framework and have adapted

Mercator4 to reflect these changes. While the current version

of Mercator4 does not yet capture as many protein sequences

as the original version (Supplemental Table 2), the new

classifications are more specific.

The increased specificity together with the design goals offer

several advantages. (1) Statistical representation analyses such

as an over-representation analysis is straightforward and can

be restricted to any level on the hierarchical bin tree. Although

the previous version of MapMan v.3 already performed reason-

ably well for protein functional annotation (Klie and Nikoloski,

2012), performance has been substantially improved by a

complete redesign of the framework. (2) The new MapMan4

framework is fully deterministic and can be applied to any land

plant proteome to allow a consistent comparison between

proteomes. Finally, (3) the annotation process performed by

the online tool Mercator4 takes only minutes to annotate a

complete plant proteome.

To demonstrate the usefulness of the MapMan4 framework, we

analyzed the deduced proteomes of two Cuscuta species. For

survival, these holoparasitic plants strictly rely on a nutrient

supply from their host plants, which has relieved them from an

autotrophic lifestyle. In line with this evolutionary step, the plastid

and nuclear genomes have experienced extensive losses in

genes related to photosynthesis and other processes not needed

for a parasitic lifestyle (Krause, 2008; Vogel et al., 2018). With

the new MapMan4 framework, substantial protein losses in

categories containing components of the PEP complex and

protein factors involved in plastidial RNA editing are detectable

in detail and can be visualized by the Mercator4 tree viewer

(Figure 6). The Mercator4 annotation enables a quick and

reliable survey of which proteins within a certain biological

context are available or not in a given plant proteome.

METHODS

Design of the MapMan4 Framework

TheMapMan4hierarchical category structurewasdesigned basedonpub-

lished experimental evidence and textbook knowledge (Figure 1). This also

provided initial reference proteins that were used as seeds to find orthologs

in high-quality annotated plant genomes across the plant kingdom.

Determining whether a protein is a true ortholog involved manual

examination of multiple sequence alignments from many plant species.

The curated set of orthologous proteins identified for each MapMan4 bin

was used to create one or more bin-specific Hidden Markov Models

(HMMs), which can identify orthologous proteins from additional species.

The main functional bins in MapMan4 were designed to contain

proteins that have a strong biological context, e.g., the well-defined

function of a protein within a pathway. However, it was necessary to

relax this criterion for transcription factors, which are simply classified

using their canonical transcription factor family as context. Another

case where limited functional context is available are the large enzyme

families, which were currently gathered in Bin-50. This category

includes proteins that are known to belong to enzyme families, but

information pertaining to their specific function may not have been

ascertained.

Automatic Annotation of Plant Proteomes

Each protein to be classified is tested against the bin-specific HMMs,

using hmmscan from the HMMER3 software package (Eddy, 2011). If

the provided sequences are nucleotides, a 6-frame translation of the

sequence is generated for testing against the HMMs.

Many proteins that are assigned to the subcategories under the 27 main

categories, based on their biological role, will also have assignment to cat-

egories under Bin-50 on the basis of their enzymatic activity. In these

cases, assignments to the 27 main categories are considered to have a

higher priority, and the redundant enzymatic activity bin assignment is

filtered out.

The remaining unclassified proteins are subsequently compared with pro-

tein sequences contained in the Swiss-Prot database (The UniProt

Consortium, 2018) using BLASTP. Positive matches (using a BLAST bit

score >80) inherit the annotation from the matching Swiss-Prot hit and

move to Bin-35.1 (not assigned.annotated). This provides an annotation

for a number of proteins that were not assigned to a functional MapMan4

bin. Proteins that remain unannotated are placed in Bin-35.2 (not

assigned.not annotated).

Mercator4 Implementation

TheMercator4 annotation web tool was implemented using the Java Port-

let technology on a Liferay Portal (https://www.liferay.com). The front-end

website is written in HTML with interactive components provided using

the Javascript library D3 (https://d3js.org). The Javascript code for the

collapsible tree visualization module is based on code created by Kate

Morley (http://code.iamkate.com).

Submitted FASTA-formatted text files are split and distributed to a HPC

cluster running Grid Engine. All back-end pre- and post-processing of
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the jobs has been written in Java. The Distributed Resource Management

Application API (DRMAA) is used to submit and monitor the jobs. The re-

sults are evaluated and collated before generation of the output file, which

is presented to the user for download.

Proteome Annotation

All available plant proteomes were downloaded from Ensembl Plants

(release 41, ftp://ftp.ensemblgenomes.org/pub/plants/release-41). Ge-

nomes that contained multiple splice variants were further processed to

remove all but the longest form. Before being processed by Mercator4,

each FASTA-formatted file was validated using the Mercator FASTA Val-

idator, with records shorter than 5 amino acids or longer than 25000 amino

acids removed (https://www.plabipd.de/portal/web/guest/mercator-

fasta-validator). The validated files were submitted to the onlineMercator4

annotation tool (https://www.plabipd.de/portal/mercator4).

The protein sequences used for the Mercator4 usage example were from

the genomes of C. campestris (Vogel et al., 2018), C. australis (Sun et al.,

2018), S. lycopersicum (Tomato Genome Consortium, 2012), and I. nil

(Hoshino et al., 2016). Because plastid-encoded protein sequences

from C. campestris, C. australis, and I. nil were not available, plastid-

encoded protein sequences from C. gronovii (Funk et al., 2007),

C. obtusiflora (McNeal et al., 2007), and I. batatas (Yan et al., 2015) were

included instead.

Analysis of Concordant Bin Pairs in Correlation Networks

Within the expression dataset forA. thaliana (file ExpMatAra.exp, available

at http://aranet.mpimp-golm.mpg.de/download.html), all ambiguous

gene code assignments were deleted. In addition, for genes measured

by multiple probes only one was retained. The resulting gene expression

matrix was loaded into R and a correlation network was calculated using

the R cor (correlation between matrices) function both for Spearman and

Pearson correlation. The resulting matrix was then inspected for correla-

tion values between genes with correlation thresholds of 0.7–0.966 in

steps of 0.033 and only pairs where both proteins had an assignment in

Bin-1 to 27 for MapMan4, and in Bin-1 to 34 (without Bin-26) for MapMan

v.3. The pair was counted as concordant if at least one MapMan top-level

bin assignment between the two proteins was shared and discordant

otherwise. Code and data are available from https://github.com/

usadellab/MapMan-Mercator-4.

Web-Available MapMan Application

To allow the integration of the MapMan application into web services, we

have ported some basic MapMan application components into Java-

script. In addition, we have implemented code for data visualization that

relies on Javascript D3 (https://d3js.org) and allows quick rendering of

simple data formats. An over-representation analysis is also included

based on Javascript D3 and relies on a Fisher’s exact test that uses the

Lanczos approximation to compute the gamma function (Lanczos,

1964). Values and code were translated from the GNU Scientific Library.

All components were written to be maximally portable and light,

therefore pathway files, for example, need to comply with the formatting

as provided by MapMan to allow simpler parsing. The code in addition

to a working version is available from https://github.com/usadellab/

usadellab.github.io.

MapMan4 Comparison with Gene Ontology

The complete Swiss-Prot protein sequence dataset was annotated by

Mercator4 to find sets of reference proteins with each set representing

a MapMan4 leaf category. The subsequent GO annotation for each refer-

ence protein also includes ancestral GO terms, i.e., terms found in all

paths leading from the GO root term to the respective descendant term.

Reference proteins without any GO annotation were removed from the

sets. The collected GO terms for a reference protein form what we call

the compound GO annotation of the protein. Finally, a MapMan4 category

was annotated by the GO terms shared by all reference proteins of the

category. To evaluate how detailed the GO annotation of a MapMan4

category describes a protein function, we measured the depth of each

GO term appearing in the bin. The depth is defined as the minimum

number of edges leading from the root of the GO graph to the respective

GO term.

We assessed the quality of protein function predictions obtained using

Mercator4 and InterProScan (Quevillon et al., 2005). Performance was

assessed on a gold standard of rice proteins that were not present in

Swiss-Prot and that had manually curated GO annotations on the GO

website. As performance measures we used the MCC (Matthews, 1975;

Powers, 2011). Before calculating these measures, all GO term

predictions were extended to include related ancestral terms. All

material, code, documentation, and results are available as R-package

(MapMan2GO, http://github.com/usadellab/MapMan2GO).
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